EconPapers    
Economics at your fingertips  
 

Analog Implementation of a Spiking Neuron with Memristive Synapses for Deep Learning Processing

Royce R. Ramirez-Morales (), Victor H. Ponce-Ponce (), Herón Molina-Lozano, Humberto Sossa-Azuela, Oscar Islas-García and Elsa Rubio-Espino
Additional contact information
Royce R. Ramirez-Morales: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Alcaldía GAM, Ciudad de México 07700, Mexico
Victor H. Ponce-Ponce: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Alcaldía GAM, Ciudad de México 07700, Mexico
Herón Molina-Lozano: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Alcaldía GAM, Ciudad de México 07700, Mexico
Humberto Sossa-Azuela: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Alcaldía GAM, Ciudad de México 07700, Mexico
Oscar Islas-García: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Alcaldía GAM, Ciudad de México 07700, Mexico
Elsa Rubio-Espino: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Alcaldía GAM, Ciudad de México 07700, Mexico

Mathematics, 2024, vol. 12, issue 13, 1-25

Abstract: Analog neuromorphic prototyping is essential for designing and testing spiking neuron models that use memristive devices as synapses. These prototypes can have various circuit configurations, implying different response behaviors that custom silicon designs lack. The prototype’s behavior results can be optimized for a specific foundry node, which can be used to produce a customized on-chip parallel deep neural network. Spiking neurons mimic how the biological neurons in the brain communicate through electrical potentials. Doing so enables more powerful and efficient functionality than traditional artificial neural networks that run on von Neumann computers or graphic processing unit-based platforms. Therefore, on-chip parallel deep neural network technology can accelerate deep learning processing, aiming to exploit the brain’s unique features of asynchronous and event-driven processing by leveraging the neuromorphic hardware’s inherent parallelism and analog computation capabilities. This paper presents the design and implementation of a leaky integrate-and-fire (LIF) neuron prototype implemented with commercially available components on a PCB board. The simulations conducted in LTSpice agree well with the electrical test measurements. The results demonstrate that this design can be used to interconnect many boards to build layers of physical spiking neurons, with spike-timing-dependent plasticity as the primary learning algorithm, contributing to the realization of experiments in the early stage of adopting analog neuromorphic computing.

Keywords: neuromorphic; CMOS; deep learning; memristor; STDP; SNN (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/13/2025/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/13/2025/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:13:p:2025-:d:1425482

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2025-:d:1425482