EconPapers    
Economics at your fingertips  
 

Quasi-Analytical Solution of Kepler’s Equation as an Explicit Function of Time

A. N. Beloiarov, V. A. Beloiarov, R. C. Cruz-Gómez (), C. O. Monzón and J. L. Romero
Additional contact information
A. N. Beloiarov: Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragán y Calzada Olimpica, Guadalajara 44840, JA, Mexico
V. A. Beloiarov: Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragán y Calzada Olimpica, Guadalajara 44840, JA, Mexico
R. C. Cruz-Gómez: Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragán y Calzada Olimpica, Guadalajara 44840, JA, Mexico
C. O. Monzón: Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragán y Calzada Olimpica, Guadalajara 44840, JA, Mexico
J. L. Romero: Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragán y Calzada Olimpica, Guadalajara 44840, JA, Mexico

Mathematics, 2024, vol. 12, issue 13, 1-17

Abstract: Although Kepler’s laws can be empirically proven by applying Newton’s laws to the dynamics of two particles attracted by gravitational interaction, an explicit formula for the motion as a function of time remains undefined. This paper proposes a quasi-analytical solution to address this challenge. It approximates the real dynamics of celestial bodies with a satisfactory degree of accuracy and minimal computational cost. This problem is closely related to Kepler’s equation, as solving the equations of motion as a function of time also provides a solution to Kepler’s equation. The results are presented for each planet of the solar system, including Pluto, and the solution is compared against real orbits.

Keywords: Kepler’s equation; quasi-analytical solution; celestial bodies; Kepler’s laws (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/13/2108/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/13/2108/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:13:p:2108-:d:1429178

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2108-:d:1429178