EconPapers    
Economics at your fingertips  
 

Software Fault Localization Based on Weighted Association Rule Mining and Complex Networks

Wentao Wu, Shihai Wang and Bin Liu ()
Additional contact information
Wentao Wu: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Shihai Wang: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Bin Liu: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Mathematics, 2024, vol. 12, issue 13, 1-21

Abstract: Software fault localization technology aims to identify suspicious statements that cause software failures, which is crucial for ensuring software quality. Spectrum-based software fault location (SBFL) technology calculates the suspiciousness of each statement by analyzing the correlation between statement coverage information and execution results in test cases. SBFL has attracted increasing attention from scholars due to its high efficiency and scalability. However, existing SBFL studies have shown that a large number of statements share the same suspiciousness, which hinders software debuggers from quickly identifying the location of faulty statements. To address this challenge, we propose an SBFL model based on weighted association rule mining and complex networks: FL-WARMCN. The algorithm first uses Jaccard to measure the distance between passing and failing test cases, and applies it as the weight of passing test cases. Next, FL-WARMCN calculates the initial suspiciousness of each statement based on the program spectrum data. Then, the FL-WARMCN model utilizes a weighted association rule mining algorithm to obtain the correlation relationships between statements and models the network based on this. In the network, the suspiciousness of statements is used as node weights, and the correlation between statements is used as edge weights. We chose the eigenvector centrality that takes into account the degree centrality of statements and the importance of neighboring statements to calculate the importance of each statement, and used it as a weight to incorporate into the weighted suspiciousness calculation of the statement. Finally, we applied the FL-WARMCN model for experimental validation on the Defects4J dataset. The results showed that the model was significantly superior to other baselines. In addition, we analyzed the impact of different node and edge weights on model performance.

Keywords: software fault localization; fault detection; association rule mining; complex network (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/13/2113/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/13/2113/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:13:p:2113-:d:1429708

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2113-:d:1429708