EconPapers    
Economics at your fingertips  
 

Hidden Abstract Stack Markov Models with Learning Process

Mete Özbaltan ()
Additional contact information
Mete Özbaltan: Department of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, 25050 Erzurum, Türkiye

Mathematics, 2024, vol. 12, issue 13, 1-19

Abstract: We present hidden abstract stack Markov models (HASMMs) with their learning process. The HASMMs we offer carry the more expressive nature of probabilistic context-free grammars (PCFGs) while allowing faster parameter fitting of hidden Markov models (HMMs). Both HMMs and PCFGs are widely utilized structured models, offering an effective formalism capable of describing diverse phenomena. PCFGs are better accommodated than HMMs such as for expressing natural language processing; however, HMMs outperform PCFGs for parameter fitting. We extend HMMs towards PCFGs for such applications, by associating each state of an HMM with an abstract stack, which can be thought of as the single-stack alphabet of pushdown automata (PDA). As a result, we leverage the expressive capabilities of PCFGs for such applications while mitigating the cubic complexity of parameter learning in the observation sequence length of PCFGs by adopting the bilinear complexity of HMMs.

Keywords: hidden Markov model; probabilistic context-free grammar; stack; counter; learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/13/2144/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/13/2144/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:13:p:2144-:d:1431183

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2144-:d:1431183