Realization of Extremal Spectral Data by Pentadiagonal Matrices
Hubert Pickmann-Soto (),
Susana Arela-Pérez,
Charlie Lozano and
Hans Nina
Additional contact information
Hubert Pickmann-Soto: Departamento de Matemática, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile
Susana Arela-Pérez: Departamento de Matemática, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile
Charlie Lozano: Carrera de Matemática, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz 0201, Bolivia
Hans Nina: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2024, vol. 12, issue 14, 1-12
Abstract:
In this paper, we address the extremal inverse eigenvalue problem for pentadiagonal matrices. We provide sufficient conditions for their existence and realizability through new constructions that consider spectral data of its leading principal submatrices. Finally, we present some examples generated from the algorithmic procedures derived from our results.
Keywords: inverse eigenvalue problem; symmetric pentadiagonal matrices; nonsymmetric pentadiagonal matrices; leading principal submatrices (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/14/2198/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/14/2198/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:14:p:2198-:d:1434370
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().