On the Continuity Equation in Space–Time Algebra: Multivector Waves, Energy–Momentum Vectors, Diffusion, and a Derivation of Maxwell Equations
Manuel Beato Vásquez and
Melvin Arias Polanco ()
Additional contact information
Manuel Beato Vásquez: Escuela de Física, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Av. Alma Mater, Santo Domingo 10105, Dominican Republic
Melvin Arias Polanco: Escuela de Física, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Av. Alma Mater, Santo Domingo 10105, Dominican Republic
Mathematics, 2024, vol. 12, issue 14, 1-18
Abstract:
Historically and to date, the continuity equation (C.E.) has served as a consistency criterion for the development of physical theories. In this paper, we study the C.E. employing the mathematical framework of space–time algebra (STA), showing how common equations in mathematical physics can be identified and derived from the C.E.’s structure. We show that, in STA, the nabla equation given by the geometric product between the vector derivative operator and a generalized multivector can be identified as a system of scalar and vectorial C.E.—and, thus, another form of the C.E. itself. Associated with this continuity system, decoupling conditions are determined, and a system of wave equations and the generalized analogous quantities to the energy–momentum vectors and the Lorentz force density (and their corresponding C.E.) are constructed. From the symmetry transformations that make the C.E. system’s structure invariant, a system with the structure of Maxwell’s field equations is derived. This indicates that a Maxwellian system can be derived not only from the nabla equation and the generalized continuity system as special cases, but also from the symmetries of the C.E. structure. Upon reduction to well-known simpler quantities, the results found are consistent with the usual STA treatment of electrodynamics and hydrodynamics. The diffusion equation is explored from the continuity system, where it is found that, for decoupled systems with constant or explicitly dependent diffusion coefficients, the absence of external vector sources implies a loss in the diffusion equation structure, transforming it into Helmholtz-like and wave equations.
Keywords: continuity equation; Clifford algebra; geometric algebra; space–time algebra; wave equation; energy–momentum vectors; symmetries; Maxwell’s equations; diffusion equation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/14/2270/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/14/2270/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:14:p:2270-:d:1439212
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().