EconPapers    
Economics at your fingertips  
 

A Parsimonious Separated Representation Empowering PINN–PGD-Based Solutions for Parametrized Partial Differential Equations

Chady Ghnatios () and Francisco Chinesta
Additional contact information
Chady Ghnatios: PIMM Research Laboratory, UMR 8006 CNRS-ENSAM-CNAM, Arts et Metiers Institute of Technology, 151 Boulevard de l’Hôpital, 75013 Paris, France
Francisco Chinesta: PIMM Research Laboratory, UMR 8006 CNRS-ENSAM-CNAM, Arts et Metiers Institute of Technology, 151 Boulevard de l’Hôpital, 75013 Paris, France

Mathematics, 2024, vol. 12, issue 15, 1-13

Abstract: The efficient solution (fast and accurate) of parametric partial differential equations (pPDE) is of major interest in many domains of science and engineering, enabling evaluations of the quantities of interest, optimization, control, and uncertainty propagation—all them under stringent real-time constraints. Different methodologies have been proposed in the past within the model order reduction (MOR) community, based on the use of reduced bases (RB) or the separated representation at the heart of the so-called proper generalized decompositions (PGD). In PGD, an alternate-direction strategy is employed to circumvent the integration issues of operating in multi-dimensional domains. Recently, physics informed neural networks (PINNs), a particular collocation schema where the unknown field is approximated by a neural network (NN), have emerged in the domain of scientific machine learning. PNNs combine the versatility of NN-based approximation with the ease of collocating pPDE. The present paper proposes a combination of both procedures to find an efficient solution for pPDE, that can either be viewed as an efficient collocation procedure for PINN, or as a monolithic PGD that bypasses the use of the fixed-point alternated directions.

Keywords: proper generalized decomposition; physics informed neural network; machine learning; parsimonious learning; separated representation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/15/2365/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/15/2365/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:15:p:2365-:d:1445505

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2365-:d:1445505