EconPapers    
Economics at your fingertips  
 

Progressive Archive in Adaptive jSO Algorithm

Petr Bujok ()
Additional contact information
Petr Bujok: Department of Informatics and Computers, University of Ostrava, 30. Dubna 22, 70103 Ostrava, Czech Republic

Mathematics, 2024, vol. 12, issue 16, 1-20

Abstract: The problem of optimisation methods is the stagnation of population P , which results in a local solution for the task. This problem can be solved by employing an archive for good historical solutions outperformed by the new better offspring. The archive A was introduced with the variant of adaptive differential evolution (DE), and it was successfully applied in many adaptive DE variants including the efficient jSO algorithm. In the original jSO, the historical good individuals replace the random existing positions in A . It causes that outperformed historical solution from P with lower quality to replace the stored solution in A with better quality. In this paper, a new approach to replace individuals in archive A more progressively is proposed. Outperformed individuals from P replace solutions in the worse part of A based on the function value. The portion of A selected for replacement is controlled by the input parameter, and its setting is studied in this experiment. The proposed progressive archive is employed in the original jSO. Moreover, the Eigenvector transformation of the individuals for crossover is applied to increase the efficiency for the rotated optimisation problems. The efficiency of the proposed progressive archive and the Eigen crossover are evaluated using the set of 29 optimisation problems for CEC 2024 and various dimensionality. All the experiments were performed on a standard PC, and the results were compared using the standard statistical methods. The newly proposed algorithm with the progressive archive approach performs substantially better than the original jSO, especially when 20 or 40 % of the worse individuals of A are set for replacement. The Eigen crossover increases the performance of the proposed jSO algorithm with the progressive archive approach. The estimated time complexity illustrates the low computational demands of the proposed archive approach.

Keywords: differential evolution; jSO; Eigen transformation; archive; experiments; optimisation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/16/2534/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/16/2534/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:16:p:2534-:d:1457780

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2534-:d:1457780