EconPapers    
Economics at your fingertips  
 

MSCF-Net: Attention-Guided Multi-Scale Context Feature Network for Ship Segmentation in Surveillance Videos

Xiaodan Jiang, Xiajun Ding () and Xiaoliang Jiang ()
Additional contact information
Xiaodan Jiang: College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
Xiajun Ding: College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
Xiaoliang Jiang: College of Mechanical Engineering, Quzhou University, Quzhou 324000, China

Mathematics, 2024, vol. 12, issue 16, 1-17

Abstract: With the advent of artificial intelligence, ship segmentation has become a critical component in the development of intelligent maritime surveillance systems. However, due to the increasing number of ships and the increasingly complex maritime traffic environment, the target features in these ship images are often not clear enough, and the key details cannot be clearly identified, which brings difficulty to the segmentation task. To tackle these issues, we present an approach that leverages state-of-the-art technology to improve the precision of ship segmentation in complex environments. Firstly, we employ a multi-scale context features module using different convolutional kernels to extract a richer set of semantic features from the images. Secondly, an enhanced spatial pyramid pooling (SPP) module is integrated into the encoder’s final layer, which significantly expands the receptive field and captures a wider range of contextual information. Furthermore, we introduce an attention module with a multi-scale structure to effectively obtain the interactions between the encoding–decoding processes and enhance the network’s ability to exchange information between layers. Finally, we performed comprehensive experiments on the public SeaShipsSeg and MariBoatsSubclass open-source datasets to validate the efficacy of our approach. Through ablation studies, we demonstrated the effectiveness of each individual component and confirmed its contribution to the overall system performance. In addition, comparative experiments with current state-of-the-art algorithms showed that our MSCF-Net excelled in both accuracy and robustness. This research provides an innovative insight that establishes a strong foundation for further advancements in the accuracy and performance of ship segmentation techniques.

Keywords: ship segmentation; multi-scale context feature; spatial pyramid pooling; attention module; deep learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/16/2566/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/16/2566/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:16:p:2566-:d:1459906

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2566-:d:1459906