EconPapers    
Economics at your fingertips  
 

Interdisciplinary Education Promotes Scientific Research Innovation: Take the Composite Control of the Permanent Magnet Synchronous Motor as an Example

Peng Gao (), Liandi Fang and Huihui Pan
Additional contact information
Peng Gao: School of Electrical Engineering, Tongling University, Tongling 244061, China
Liandi Fang: Anhui Engineering Research Center of Intelligent Manufacturing of Copper-Based Materials, Tongling 244061, China
Huihui Pan: School of Electrical Engineering, Tongling University, Tongling 244061, China

Mathematics, 2024, vol. 12, issue 16, 1-18

Abstract: Intersecting disciplines, as an important trend in the development of modern academic research and education, have exerted a profound and positive influence on scientific research activities. Based on control theory and fractional-order theory, this paper presents a novel approach for the speed regulation of a permanent magnet synchronous motor (PMSM) in the presence of uncertainties and external disturbances. The proposed method is a composite control based on a model-free sliding mode and a fractional-order ultra-local model. The model-free sliding mode is a control strategy that utilizes the sliding mode control methodology without explicitly relying on a mathematical model of the system being controlled. The fractional-order ultra-local model is a mathematical representation of a dynamic system that incorporates the concept of fractional-order derivatives. The core of the controller is a new type of fractional-order fast nonsingular terminal sliding mode surface, which ensures high robustness, quick convergence, while preventing singularity. Moreover, a novel fractional-order nonlinear extended state observer is proposed to estimate both internal and external disturbances of the fractional-order ultra-local model. The stability of the system is analyzed using both the Lyapunov stability theory and the Mittag–Leffler stability theory. The analysis confirms the convergence stability of the closed-loop system under the proposed control scheme. The comparison results indicate that the proposed composite control based on the fractional-order ultra-local model is a promising solution for regulating the speed of PMSMs in the presence of uncertainties and disturbances.

Keywords: interdisciplinary disciplines; composite control; PMSM; fractional-order theory (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/16/2602/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/16/2602/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:16:p:2602-:d:1462017

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2602-:d:1462017