Quantum-Fuzzy Expert Timeframe Predictor for Post-TAVR Monitoring
Lilia Tightiz and
Joon Yoo ()
Additional contact information
Lilia Tightiz: School of Computing, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
Joon Yoo: School of Computing, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
Mathematics, 2024, vol. 12, issue 17, 1-22
Abstract:
This paper presents a novel approach to predicting specific monitoring timeframes for Permanent Pacemaker Implantation (PPMI) requirements following a Transcatheter Aortic Valve Replacement (TAVR). The method combines Quantum Ant Colony Optimization (QACO) with the Adaptive Neuro-Fuzzy Inference System (ANFIS) and incorporates expert knowledge. Although this forecast is more precise, it requires a larger number of predictors to achieve this level of accuracy. Our model deploys expert-derived insights to guarantee the clinical relevance and interpretability of the predicted outcomes. Additionally, we employ quantum computing techniques to address this complex and high-dimensional problem. Through extensive assessments, we show that our quantum-enhanced model outperforms traditional methods with notable improvement in evaluation metrics, such as accuracy, precision, recall, and F1 score. Furthermore, with the integration of eXplainable AI (XAI) methods, our solution enhances the transparency and reliability of medical predictive models, hence promoting improved clinical practice decision-making. The findings highlight how quantum computing has the potential to completely transform predictive analytics in the medical field, especially when it comes to improving patient care after TAVR.
Keywords: ant colony optimization; adaptive network-based fuzzy inference system; eXplainable AI; quantum computing; transcatheter aortic valve replacement (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/17/2625/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/17/2625/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:17:p:2625-:d:1463218
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().