EconPapers    
Economics at your fingertips  
 

Enhancing Predictive Models for On-Street Parking Occupancy: Integrating Adaptive GCN and GRU with Household Categories and POI Factors

Xiaohang Zhao and Mingyuan Zhang ()
Additional contact information
Xiaohang Zhao: Department of Construction Management, Dalian University of Technology, Dalian 116024, China
Mingyuan Zhang: Department of Construction Management, Dalian University of Technology, Dalian 116024, China

Mathematics, 2024, vol. 12, issue 18, 1-23

Abstract: Accurate predictions of parking occupancy are vital for navigation and autonomous transport systems. This research introduces a deep learning mode, AGCRU, which integrates Adaptive Graph Convolutional Networks (GCNs) with Gated Recurrent Units (GRUs) for predicting on-street parking occupancy. By leveraging real-world data from Melbourne, the proposed model utilizes on-street parking sensors to capture both temporal and spatial dynamics of parking behaviors. The AGCRU model is enhanced with the inclusion of Points of Interest (POIs) and housing data to refine its predictive accuracy based on spatial relationships and parking habits. Notably, the model demonstrates a mean absolute error (MAE) of 0.0156 at 15 min, 0.0330 at 30 min, and 0.0558 at 60 min; root mean square error (RMSE) values are 0.0244, 0.0665, and 0.1003 for these intervals, respectively. The mean absolute percentage error (MAPE) for these intervals is 1.5561%, 3.3071%, and 5.5810%. These metrics, considerably lower than those from traditional and competing models, indicate the high efficiency and accuracy of the AGCRU model in an urban setting. This demonstrates the model as a tool for enhancing urban parking management and planning strategies.

Keywords: parking occupancy prediction; adaptive graph convolutional networks; gated recurrent units; spatiotemporal factors analysis; POI; household category (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/18/2823/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/18/2823/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:18:p:2823-:d:1476236

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2823-:d:1476236