EconPapers    
Economics at your fingertips  
 

Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights

Rana Tabassum, Mohammad Abrar Shakil Sejan, Md Habibur Rahman, Md Abdul Aziz and Hyoung-Kyu Song ()
Additional contact information
Rana Tabassum: Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Mohammad Abrar Shakil Sejan: Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea
Md Habibur Rahman: Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Md Abdul Aziz: Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Hyoung-Kyu Song: Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea

Mathematics, 2024, vol. 12, issue 19, 1-20

Abstract: By adjusting the propagation environment using reconfigurable reflecting elements, intelligent reflecting surfaces (IRSs) have become potential techniques used to improve the efficiency of wireless communication networks. In IRS-assisted communication systems, accurate channel estimation is crucial for optimizing signal transmission and achieving high spectral efficiency. As mobile data traffic continues to surge and the demand for high-capacity and low-latency wireless connectivity grows, IRSs are becoming pivotal technologies in the development of next-generation communication networks. IRSs offer the potential to revolutionize wireless propagation environments, improving network capacity and coverage, particularly in high-frequency wave scenarios where traditional signals encounter obstacles. Amidst this evolving landscape, machine learning (ML) emerges as a powerful tool to harness the full potential of IRS-assisted communication systems, particularly given the escalating computational complexity associated with deploying and operating IRSs in dynamic environments. This paper presents an overview of preliminary results for IRS-assisted communication using recurrent neural networks (RNNs). We first implement single- and double-layer LSTM, BiLSTM, and GRU techniques for an IRS-based communication system. In the next phase, we explore a hybrid approach, combining different RNN techniques, including LSTM-BiLSTM, LSTM-GRU, and BiLSTM-GRU, as well as their reverse configurations. These RNN algorithms were evaluated with respect to bit error rate (BER) and symbol error rate (SER) for IRS-enhanced communication. According to the experimental results, the BiLSTM double-layer model and the BiLSTM-GRU combination demonstrated the highest BER and SER accuracy compared to other approaches.

Keywords: intelligent reflecting surface; machine learning; recurrent neural network (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/19/2973/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/19/2973/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:19:p:2973-:d:1485133

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2973-:d:1485133