EconPapers    
Economics at your fingertips  
 

Generalized Kelvin–Voigt Creep Model in Fractal Space–Time

Eduardo Reyes de Luna, Andriy Kryvko, Juan B. Pascual-Francisco, Ignacio Hernández and Didier Samayoa ()
Additional contact information
Eduardo Reyes de Luna: School of Engineering and Sciences, Tecnologico de Monterrey, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico
Andriy Kryvko: Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
Juan B. Pascual-Francisco: Departamento de Mecatrónica, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún Km. 20, Ex-Hacienda de Santa Barbara, Zempoala 43830, Mexico
Ignacio Hernández: Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
Didier Samayoa: Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico

Mathematics, 2024, vol. 12, issue 19, 1-13

Abstract: In this paper, we study the creep phenomena for self-similar models of viscoelastic materials and derive a generalization of the Kelvin–Voigt model in the framework of fractal continuum calculus. Creep compliance for the Kelvin–Voigt model is extended to fractal manifolds through local fractal-continuum differential operators. Generalized fractal creep compliance is obtained, taking into account the intrinsic time τ and the fractal dimension of time-scale β . The model obtained is validated with experimental data obtained for resin samples with the fractal structure of a Sierpinski carpet and experimental data on rock salt. Comparisons of the model predictions with the experimental data are presented as the curves of slow continuous deformations.

Keywords: fractal creep; viscoelastic materials; fractal continuum derivative; Kelvin–Voigt creep equation; Hausdorff dimension; chemical dimension (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/19/3099/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/19/3099/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:19:p:3099-:d:1491943

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3099-:d:1491943