Intuitionistic Fuzzy Ordinal Priority Approach with Grey Relational Analysis
Priyanka Majumder and
Valerio Antonio Pamplona Salomon ()
Additional contact information
Priyanka Majumder: Department of Basic Science and Humanities (Mathematics), Techno College of Engineering Agartala, Tripura 799004, India
Valerio Antonio Pamplona Salomon: Department of Production, Universidade Estadual Paulista (UNESP—Sao Paulo State University), Guaratingueta 12516-410, Brazil
Mathematics, 2024, vol. 12, issue 19, 1-15
Abstract:
Multi-attribute decision-making (MADM) is a methodology for solving decision problems with a finite set of alternatives. The several methods of MADM require weights for the criteria and the alternatives to provide a solution. The Ordinal Priority Approach (OPA) is a recently proposed method for MADM that innovates; it does not require these inputs, just the rankings of criteria and alternatives. This article introduces a new hybrid method for MADM: the Intuitionistic Fuzzy Ordinal Priority Approach with Grey Relational Analysis (OPA-IF-GRA). OPA-IF-GRA combines GRA with OPA-IF, a newer extension of OPA that includes intuitionistic fuzzy sets to incorporate uncertainty into the decision-making process. The article presents an OPA-IF-GRA application for solving an electronics engineering problem, considering four criteria and six alternatives. The solution of OPA-IF-GRA is compared with the solutions obtained with three other MADM methods.
Keywords: ordinal priority approach; intuitionistic fuzzy sets; grey relational analysis; power dividers (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/19/3156/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/19/3156/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:19:p:3156-:d:1494868
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().