Scale Mixture of Exponential Distribution with an Application
Jorge A. Barahona,
Yolanda M. Gómez,
Emilio Gómez-Déniz,
Osvaldo Venegas () and
Héctor W. Gómez
Additional contact information
Jorge A. Barahona: Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Yolanda M. Gómez: Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
Emilio Gómez-Déniz: Department of Quantitative Methods in Economics and TIDES Institute, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Héctor W. Gómez: Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2024, vol. 12, issue 1, 1-17
Abstract:
This article presents an extended distribution that builds upon the exponential distribution. This extension is based on a scale mixture between the exponential and beta distributions. By utilizing this approach, we obtain a distribution that offers increased flexibility in terms of the kurtosis coefficient. We explore the general density, properties, moments, asymmetry, and kurtosis coefficients of this distribution. Statistical inference is performed using both the moments and maximum likelihood methods. To show the performance of this new model, it is applied to a real dataset with atypical observations. The results indicate that the new model outperforms two other extensions of the exponential distribution.
Keywords: exponential distribution; kurtosis; maximum likelihood estimator; slash distribution; EM algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/1/156/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/1/156/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:1:p:156-:d:1312551
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().