EconPapers    
Economics at your fingertips  
 

Empirical-Likelihood-Based Inference for Partially Linear Models

Haiyan Su () and Linlin Chen
Additional contact information
Haiyan Su: School of Computing, Montclair State University, Montclair, NJ 07043, USA
Linlin Chen: Department of Mathematics and Statistics, Rochester Institute of Technology, Rochester, NY 14632, USA

Mathematics, 2024, vol. 12, issue 1, 1-12

Abstract: Partially linear models find extensive application in biometrics, econometrics, social sciences, and various other fields due to their versatility in accommodating both parametric and nonparametric elements. This study aims to establish statistical inference for the parametric component effects within these models, employing a nonparametric empirical likelihood approach. The proposed method involves a projection step to eliminate the nuisance nonparametric component and utilizes an empirical-likelihood-based technique, along with the Bartlett correction, to enhance the coverage probability of the confidence interval for the parameter of interest. This method demonstrates robustness in handling normally and non-normally distributed errors. The proposed empirical likelihood ratio statistic converges to a limiting chi-square distribution under certain regulations. Simulation studies demonstrate that this method provides better inference in terms of coverage probabilities compared to the conventional normal-approximation-based method. The proposed method is illustrated by analyzing the Boston housing data from a real study.

Keywords: partially linear models; empirical likelihood; confidence interval (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/1/162/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/1/162/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:1:p:162-:d:1313117

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:1:p:162-:d:1313117