EconPapers    
Economics at your fingertips  
 

A Chaos-Based Encryption Algorithm to Protect the Security of Digital Artwork Images

Li Shi, Xiangjun Li (), Bingxue Jin () and Yingjie Li
Additional contact information
Li Shi: School of Art, Nanchang University, Nanchang 330031, China
Xiangjun Li: School of Software, Nanchang University, Nanchang 330031, China
Bingxue Jin: School of Software, Nanchang University, Nanchang 330031, China
Yingjie Li: School of Software, Nanchang University, Nanchang 330031, China

Mathematics, 2024, vol. 12, issue 20, 1-17

Abstract: Due to the security weaknesses of chaos-based pseudorandom number generators, in this paper, a new pseudorandom number generator (PRNG) based on mixing three-dimensional variables of a cat chaotic map is proposed. A uniformly distributed chaotic sequence by a logistic map is used in the mixing step. Both statistical tests and a security analysis indicate that our PRNG has good randomness and is more complex than any one-dimensional variable of a cat map. Furthermore, a new image encryption algorithm based on the chaotic PRNG is provided to protect the content of artwork images. The core of the algorithm is to use the sequence generated by the pseudorandom number generator to achieve the process of disruption and diffusion of the image pixels, so as to achieve the effect of obfuscation and encryption of the image content. Several security tests demonstrate that this image encryption algorithm has a high security level.

Keywords: chaos; pesudorandom number generator; artwork image encryption (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/20/3162/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/20/3162/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:20:p:3162-:d:1495317

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3162-:d:1495317