EconPapers    
Economics at your fingertips  
 

Research on the Vibration Response of High-Rise Buildings under Blasting Load

Yubao Yuan, Zhenghua Gao, Lu He and Zhen Lei ()
Additional contact information
Yubao Yuan: Guiyang Institute of Humanities and Technology, Guiyang 550025, China
Zhenghua Gao: School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
Lu He: School of Mining Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Zhen Lei: School of Mining Engineering, Guizhou Institute of Technology, Guiyang 550003, China

Mathematics, 2024, vol. 12, issue 20, 1-18

Abstract: The vibration caused by blasting load may result in damage to high-rise buildings. In view of this consideration, an investigation of the vibration law was conducted in the context of an actual engineering project. The objective of this study was to analyze the peak particle velocity (PPV), vibration frequency, and peak particle stress (PPS) of the buildings within a range of 50 m to 250 m from the epicenter, under the condition of a single-shot charge of 30 kg. To achieve this, a combination of theoretical analysis, field tests, and numerical experiments was employed. Sadovsky’s formula was used in combination with the least squares method to fit the propagation law of ground PPV. ANSYS 17.0/LS-DYNA and Origin 8.0 software were applied to study the amplification effect of building PPV and the relationship between PPV and PPS. Taking into account the difference between the height of the ground measuring point and the height of the explosive center, we investigated the PPV of high-rise buildings under three conditions of 36 m, 6 m, and −24 m drop from the explosive center, to strengthen the in-depth understanding of resonance effect. The following conclusions were reached: the ground PPV decreases with increasing horizontal distance from the explosive center, with the radial PPV being the largest. The vertical PPV of buildings exhibits a height amplification effect, with a magnification factor of 2.66. The radial and tangential PPVs of buildings demonstrate that the middle layer exhibits a relatively modest speed, whereas the low and high layers demonstrate considerably higher speeds. The greater the vertical distance from the explosion center is, the greater is the PPV. The vibration frequency is irregular, with an average of 10 Hz. The PPV of buildings is not proportional to the PPS, which is the highest at the bottom. It is recommended that the PPS of buildings be included in the criteria for safety allowances in blasting vibration.

Keywords: high-rise building; blasting vibration; peak particle velocity; peak particle stress; elevation amplification effect (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/20/3165/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/20/3165/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:20:p:3165-:d:1495698

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3165-:d:1495698