Dini’s Theorem for Fuzzy Number-Valued Continuous Functions
Juan José Font (),
Sergio Macario and
Manuel Sanchis
Additional contact information
Juan José Font: Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Campus del Riu Sec. s/n, 12071 Castelló, Spain
Sergio Macario: Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Campus del Riu Sec. s/n, 12071 Castelló, Spain
Manuel Sanchis: Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Campus del Riu Sec. s/n, 12071 Castelló, Spain
Mathematics, 2024, vol. 12, issue 20, 1-13
Abstract:
This work aims to provide several versions of Dini’s theorem for fuzzy number-valued continuous functions defined on a compact set K . In this context, there is a wide variety of possibilities since, unlike the real line, we can consider different topologies and orders on the set of fuzzy numbers. For example, we will show that the fuzzy Dini’s theorem holds for the usual partial orders and the most commonly used topologies but does not hold for all orders in general.
Keywords: Dini’s theorem; pointwise and uniform convergence; fuzzy-valued functions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/20/3209/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/20/3209/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:20:p:3209-:d:1497866
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().