Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method
Saleh Alshammari (),
Othman Abdullah Almatroud,
Mohammad Alshammari,
Hamzeh Zureigat and
M. Mossa Al-Sawalha ()
Additional contact information
Saleh Alshammari: Deparment of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
Othman Abdullah Almatroud: Deparment of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
Mohammad Alshammari: Deparment of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
Hamzeh Zureigat: Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan
M. Mossa Al-Sawalha: Deparment of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
Mathematics, 2024, vol. 12, issue 21, 1-29
Abstract:
This work employs the Extended Direct Algebraic Method (EDAM) to solve quadratic and cubic nonlinear Klein–Gordon Equations (KGEs), which are standard models in particle and quantum physics that describe the dynamics of scaler particles with spin zero in the framework of Einstein’s theory of relativity. By applying variables-based wave transformations, the targeted KGEs are converted into Nonlinear Ordinary Differential Equations (NODEs). The resultant NODEs are subsequently reduced to a set of nonlinear algebraic equations through the assumption of series-based solutions for them. New families of soliton solutions are obtained in the form of hyperbolic, trigonometric, exponential and rational functions when these systems are solved using Maple. A few soliton solutions are considered for certain values of the given parameters with the help of contour and 3D plots, which indicate that the solitons exist in the form of dark kink, hump kink, lump-like kink, bright kink and cuspon kink solitons. These soliton solutions are relevant to actual physics, for instance, in the context of particle physics and theories of quantum fields. These solutions are useful also for the enhancement of our understanding of the basic particle interactions and wave dynamics at all levels of physics, including but not limited to cosmology, compact matter physics and nonlinear optics.
Keywords: Klein–Gordon equations; nonlinear partial differential equations; extended direct algebraic method; kink solitons; explicit solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/21/3433/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/21/3433/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:21:p:3433-:d:1512952
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().