EconPapers    
Economics at your fingertips  
 

Soft Actor-Critic Approach to Self-Adaptive Particle Swarm Optimisation

Daniel von Eschwege and Andries Engelbrecht ()
Additional contact information
Daniel von Eschwege: Department of Industrial Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
Andries Engelbrecht: Department of Industrial Engineering, Stellenbosch University, Stellenbosch 7600, South Africa

Mathematics, 2024, vol. 12, issue 22, 1-34

Abstract: Particle swarm optimisation (PSO) is a swarm intelligence algorithm that finds candidate solutions by iteratively updating the positions of particles in a swarm. The decentralised optimisation methodology of PSO is ideally suited to problems with multiple local minima and deceptive fitness landscapes, where traditional gradient-based algorithms fail. PSO performance depends on the use of a suitable control parameter (CP) configuration, which governs the trade-off between exploration and exploitation in the swarm. CPs that ensure good performance are problem-dependent. Unfortunately, CPs tuning is computationally expensive and inefficient. Self-adaptive particle swarm optimisation (SAPSO) algorithms aim to adaptively adjust CPs during the optimisation process to improve performance, ideally while reducing the number of performance-sensitive parameters. This paper proposes a reinforcement learning (RL) approach to SAPSO by utilising a velocity-clamped soft actor-critic (SAC) that autonomously adapts the PSO CPs. The proposed SAC-SAPSO obtains a 50% to 80% improvement in solution quality compared to various baselines, has either one or zero runtime parameters, is time-invariant, and does not result in divergent particles.

Keywords: particle swarm optimisation; reinforcement learning; soft actor-critic; self-adaptive; swarm intelligence (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/22/3481/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/22/3481/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:22:p:3481-:d:1516173

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3481-:d:1516173