GPU Accelerating Algorithms for Three-Layered Heat Conduction Simulations
Nicolás Murúa,
Aníbal Coronel (),
Alex Tello,
Stefan Berres and
Fernando Huancas
Additional contact information
Nicolás Murúa: Departamento de Ciencias de la Computación y Tecnologías de la Información, Facultad de Ciencias Empresariales, Universidad del Bío-Bío, Campus Fernando May, Chillán 3780000, Chile
Aníbal Coronel: Departamento de Ciencias Básicas, Centro de Ciencias Exactas UBB (CCE-UBB), Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Chillán 3780000, Chile
Alex Tello: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1270300, Chile
Stefan Berres: Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Temuco 4780002, Chile
Fernando Huancas: Departamento de Matemática, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7750000, Chile
Mathematics, 2024, vol. 12, issue 22, 1-22
Abstract:
In this paper, we consider the finite difference approximation for a one-dimensional mathematical model of heat conduction in a three-layered solid with interfacial conditions for temperature and heat flux between the layers. The finite difference scheme is unconditionally stable, convergent, and equivalent to the solution of two linear algebraic systems. We evaluate various methods for solving the involved linear systems by analyzing direct and iterative solvers, including GPU-accelerated approaches using CuPy and PyCUDA. We evaluate performance and scalability and contribute to advancing computational techniques for modeling complex physical processes accurately and efficiently.
Keywords: sparse linear systems; finite difference method; heat transfer; GPU acceleration; high-performance computing; parallel processing; computational efficiency (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/22/3503/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/22/3503/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:22:p:3503-:d:1517537
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().