EconPapers    
Economics at your fingertips  
 

Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space

Indranil Biswas () and Francois-Xavier Machu
Additional contact information
Indranil Biswas: Department of Mathematics, Shiv Nadar University, NH91, Tehsil Dadri, Greater Noida 201314, Uttar Pradesh, India
Francois-Xavier Machu: Ecole Supérieure d’Informatique Électronique Automatique (ESIEA), 74 bis Av. Maurice Thorez, 94200 Ivry-sur-Seine, France

Mathematics, 2024, vol. 12, issue 23, 1-14

Abstract: The aim here is to describe all isomorphism classes of SU ( n + 1 ) -equivariant Hermitian holomorphic vector bundles on the complex projective space C P n . If G ⊂ SU ( n + 1 ) is the isotropy subgroup of a chosen point x 0 ∈ C P n , and ρ : G ⟶ GL ( V ) is a unitary representation, we obtain SU ( n + 1 ) -equivariant holomorphic Hermitian vector bundles on C P n . Next, given any v ∈ End ( V ρ ) ⊗ ( T z 0 0 , 1 C P n ) ∗ satisfying certain conditions, a new structure of an SU ( n + 1 ) -equivariant holomorphic Hermitian vector bundle on this underlying C ∞ holomorphic Hermitian bundle is obtained. It is shown that all SU ( n + 1 ) -equivariant holomorphic Hermitian vector bundles on C P n arise this way.

Keywords: projective space; equivariant holomorphic Hermitian vector bundle; unitary group (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/23/3757/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/23/3757/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:23:p:3757-:d:1532215

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3757-:d:1532215