EconPapers    
Economics at your fingertips  
 

Portfolio Selection Based on Modified CoVaR in Gaussian Framework

Piotr Jaworski () and Anna Zalewska
Additional contact information
Piotr Jaworski: Institute of Mathematics, University of Warsaw, 02-097 Warszawa, Poland
Anna Zalewska: Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warszawa, Poland

Mathematics, 2024, vol. 12, issue 23, 1-23

Abstract: We study a Mean-Risk model, where risk is measured by a Modified CoVaR (Conditional Value at Risk): CoVaR α , β ≤ ( X | Y ) = V a R β ( X | Y + V a R α ( Y ) ≤ 0 ) . We prove that in a Gaussian setting, for a sufficiently small β , such a model has a solution. There exists a portfolio that fulfills the given constraints and for which the risk is minimal. This is shown in relation to the mean–standard deviation portfolio, and numerical examples are provided.

Keywords: conditional value at risk (CoVaR); portfolio selection; mean-risk models; Gaussian copula (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/23/3766/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/23/3766/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:23:p:3766-:d:1532731

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3766-:d:1532731