EconPapers    
Economics at your fingertips  
 

Optimizing Euclidean Distance Computation

Rustam Mussabayev ()
Additional contact information
Rustam Mussabayev: Laboratory for Analysis and Modeling of Information Processes, Institute of Information and Computational Technologies, Almaty 050010, Kazakhstan

Mathematics, 2024, vol. 12, issue 23, 1-36

Abstract: This paper presents a comparative analysis of seventeen different approaches to optimizing Euclidean distance computations, which is a core mathematical operation that plays a critical role in a wide range of algorithms, particularly in machine learning and data analysis. The Euclidean distance, being a computational bottleneck in large-scale optimization problems, requires efficient computation techniques to improve the performance of various distance-dependent algorithms. To address this, several optimization strategies can be employed to accelerate distance computations. From spatial data structures and approximate nearest neighbor algorithms to dimensionality reduction, vectorization, and parallel computing, various approaches exist to accelerate Euclidean distance computation in different contexts. Such approaches are particularly important for speeding up key machine learning algorithms like K-means and K-nearest neighbors (KNNs). By understanding the trade-offs and assessing the effectiveness, complexity, and scalability of various optimization techniques, our findings help practitioners choose the most appropriate methods for improving Euclidean distance computations in specific contexts. These optimizations enable scalable and efficient processing for modern data-driven tasks, directly leading to reduced energy consumption and a minimized environmental impact.

Keywords: Euclidean distance; computational optimization; K-means clustering; K-nearest neighbors (KNNs); vectorization; parallelization; triangle inequality; spatial data structures; block vector approximations; approximate methods (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/23/3787/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/23/3787/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:23:p:3787-:d:1533491

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3787-:d:1533491