EconPapers    
Economics at your fingertips  
 

Physical Layer Security Based on Non-Orthogonal Communication Technique with Coded FTN Signaling

Myung-Sun Baek and Hyoung-Kyu Song ()
Additional contact information
Myung-Sun Baek: Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea
Hyoung-Kyu Song: Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea

Mathematics, 2024, vol. 12, issue 23, 1-14

Abstract: In recent years, ensuring communication security at the physical layer has become increasingly important due to the transmission of sensitive information over various networks. Traditional approaches to physical layer security often rely on artificial noise generation, which may not offer robust solutions against advanced interception techniques. This study addresses these limitations by proposing a novel security technique based on non-orthogonal signaling using Faster-than-Nyquist (FTN) signaling. Unlike conventional FTN methods that utilize fixed symbol intervals, the proposed technique employs variable symbol intervals encoded as secure information, shared only with legitimate receivers. This encoding enables effective interference cancellation and symbol detection at the receiver, while preventing eavesdroppers from deciphering transmitted signals. The performance of the proposed technique was evaluated using the DVB-S2X system, a practical digital video broadcasting standard. Simulation results demonstrated that the proposed method maintains smooth communication with minimal performance degradation compared to traditional methods. Furthermore, eavesdroppers were unable to decode the transmitted signals, confirming the enhanced security. This research presents a new approach to physical layer security that does not depend on generating artificial noise, offering a path to more secure and efficient communication systems.

Keywords: physical layer security; FTN; non-orthogonal signaling; IDD; DVB-S2X (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/23/3800/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/23/3800/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:23:p:3800-:d:1534117

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3800-:d:1534117