EconPapers    
Economics at your fingertips  
 

Survey of Quantum Generative Adversarial Networks (QGAN) to Generate Images

Mohammadsaleh Pajuhanfard, Rasoul Kiani and Victor S. Sheng ()
Additional contact information
Mohammadsaleh Pajuhanfard: Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA
Rasoul Kiani: Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA
Victor S. Sheng: Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA

Mathematics, 2024, vol. 12, issue 23, 1-26

Abstract: Quantum Generative Adversarial Networks (QGANs) represent a useful development in quantum machine learning, using the particular properties of quantum mechanics to solve the challenges of data analysis and modeling. This paper brings up a general analysis of five QGAN architectures, focusing on their evolution, strengths, weaknesses, and limitations in noisy intermediate-scale quantum (NISQ) devices. Primary methods like Entangling Quantum GAN (EQ-GAN) and Quantum state fidelity (QuGAN) concentrate on stability, convergence, and robust performance on small-scale datasets such as 2 × 2 grayscale images. Intermediate models such as Image Quantum GAN (IQGAN) and Experimental Quantum GAN (EXQGAN) provide new ideas like trainable encoders and patch-based sub-generators that are scalable to 8 × 8 datasets with increasing noise resilience. The most advanced method is Parameterized Quantum Wasserstein GAN (PQWGAN), which uses a hybrid quantum-classical structure to obtain high-resolution image processing for 28 × 28 grayscale datasets while trying to maintain parameter efficiency. This study explores, analyzes, and summarizes critical problems of QGANs, including accuracy, convergence, parameter efficiency, image quality, performance metrics, and training stability under noisy conditions. In addition, developing QGANs can generate and train parameters in quantum approximation optimization algorithms. One of the useful applications of QGAN is generating medical datasets that can generate medical images from limited datasets to train specific medical models for the recognition of diseases.

Keywords: Quantum Generative Adversarial Network (QGAN); generator; discriminator; QGAN architectures (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/23/3852/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/23/3852/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:23:p:3852-:d:1538545

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3852-:d:1538545