EconPapers    
Economics at your fingertips  
 

Real-World Steam Powerplant Boiler Tube Leakage Detection Using Hybrid Deep Learning

Salman Khalid, Muhammad Muzammil Azad and Heung Soo Kim ()
Additional contact information
Salman Khalid: Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
Muhammad Muzammil Azad: Department of Mechanical Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
Heung Soo Kim: Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea

Mathematics, 2024, vol. 12, issue 24, 1-16

Abstract: The detection of boiler water-wall tube leakage in steam power plants is essential to prevent efficiency loss, unexpected shutdowns, and costly repairs. This study proposes a hybrid deep learning approach that combines convolutional neural networks (CNNs) with a support vector machine (SVM) classifier to allow early and accurate leak detection. The methodology utilizes temperature data from multiple sensors positioned at critical points in the boiler system. The data of each sensor are independently processed by a dedicated CNN model, allowing for the autonomous extraction of sensor-specific features. These features are then fused to create a comprehensive feature representation of the system’s condition, which is analyzed by an SVM classifier to accurately identify leakages. By utilizing the feature extraction capabilities of CNNs and the classification strength of an SVM, this approach effectively identifies subtle operational anomalies that are indicative of potential leaks. The model demonstrates high detection accuracy and minimizes false-positives, providing a robust solution for real-time monitoring and proactive maintenance strategies in industrial systems.

Keywords: steam powerplant; boiler; leakage detection; deep learning; convolutional neural networks; hybrid approach; support vector machines (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/24/3887/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/24/3887/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:24:p:3887-:d:1540613

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3887-:d:1540613