EconPapers    
Economics at your fingertips  
 

Trajectory Tracking of a 2-Degrees-of-Freedom Serial Flexible Joint Robot Using an Active Disturbance Rejection Controller Approach

Mario Ramŕez-Neria (), Gilberto Ochoa-Ortega (), Alejandro Toro-Ossaba, Eduardo G. Hernandez-Martinez, Alexandro López-González and Juan C. Tejada
Additional contact information
Mario Ramŕez-Neria: InIAT Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Mexico City 01219, Mexico
Gilberto Ochoa-Ortega: Division of Mechatronics, Universidad Politécnica del Valle de México, Av. Mexiquense s/n, Col. Villa Esperalda, Tultitlán 54910, Mexico
Alejandro Toro-Ossaba: Artificial Intelligence and Robotics Research Group (IAR), Universidad EIA, Envigado 055428, Colombia
Eduardo G. Hernandez-Martinez: InIAT Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Mexico City 01219, Mexico
Alexandro López-González: Department of Engineering Studies for Innovation, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fé, Mexico City 01219, Mexico
Juan C. Tejada: Artificial Intelligence and Robotics Research Group (IAR), Universidad EIA, Envigado 055428, Colombia

Mathematics, 2024, vol. 12, issue 24, 1-22

Abstract: This paper presents the development of an Active Disturbance Rejection Controller (ADRC) to address the trajectory tracking problem of a 2DOF (Degrees of Freedom) Serial Flexible Robot. The proposed approach leverages differential flatness theory to determine the system’s flat output, simplifying the trajectory tracking problem into a linear state feedback control with disturbance rejection. A set of a Generalized Proportional Integral Observer (GPIO) and Luenberger observers is employed to estimate the derivatives of the flat output and both internal and external disturbances in real time. The control law is experimentally validated on a 2DOF Serial Flexible Robot prototype developed by Quanser. Quantitative results demonstrate that the ADRC achieves superior performance compared to a partial state feedback control scheme, with a Mean Squared Error (MSE) as low as 1.0651 × 10 −5 rad 2 for trajectory tracking. The ADRC effectively suppresses oscillations, minimizes high-frequency noise and reduces saturation effects, even under external disturbances. These findings underscore the robustness and efficiency of the proposed method for underactuated flexible systems.

Keywords: ADRC; 2DOF serial flexible robot; differential flatness (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/24/3989/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/24/3989/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:24:p:3989-:d:1547054

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3989-:d:1547054