Higher-Order Spectral Analysis and Artificial Intelligence for Diagnosing Faults in Electrical Machines: An Overview
Miguel Enrique Iglesias Martínez (),
Jose A. Antonino-Daviu,
Larisa Dunai,
J. Alberto Conejero and
Pedro Fernández de Córdoba
Additional contact information
Miguel Enrique Iglesias Martínez: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Campus de Vera, Camino de Vera, s/n, Edificio 8E, Acceso F, 4ª Planta, 46022 Valencia, Spain
Jose A. Antonino-Daviu: Instituto Tecnológico de la Energía, Parque Tecnológico de Valencia, Avenida Juan de la Cierva 24, 46980 Paterna, Spain
Larisa Dunai: Centro de Investigación en Tecnologías Gráficas, Universitat Politècnica de València, Camino de Vera, s/n, Edificio 8H, 46022 Valencia, Spain
J. Alberto Conejero: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Campus de Vera, Camino de Vera, s/n, Edificio 8E, Acceso F, 4ª Planta, 46022 Valencia, Spain
Pedro Fernández de Córdoba: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Campus de Vera, Camino de Vera, s/n, Edificio 8E, Acceso F, 4ª Planta, 46022 Valencia, Spain
Mathematics, 2024, vol. 12, issue 24, 1-23
Abstract:
Fault diagnosis in electrical machines is a cornerstone of operational reliability and cost-effective maintenance strategies. This review provides a comprehensive exploration of the integration of higher-order spectral analysis (HOSA) techniques—such as a bispectrum, spectral kurtosis, and multifractal wavelet analysis—with advanced artificial intelligence (AI) methodologies, including deep learning, clustering algorithms, Transformer models, and transfer learning. The synergy between HOSA’s robustness in noisy and transient environments and AI’s automation of complex classifications has significantly advanced fault diagnosis in synchronous and DC motors. The novelty of this work lies in its detailed examination of the latest AI advancements, and the hybrid framework combining HOSA-derived features with AI techniques. The proposed approaches address challenges such as computational efficiency and scalability for industrial-scale applications, while offering innovative solutions for predictive maintenance. By leveraging these hybrid methodologies, the work charts a transformative path for improving the reliability and adaptability of industrial-grade electrical machine systems.
Keywords: higher-order spectral analysis; artificial intelligence; fault diagnosis; electrical machines (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/24/4032/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/24/4032/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:24:p:4032-:d:1550191
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().