EconPapers    
Economics at your fingertips  
 

A Machine Learning Algorithm That Experiences the Evolutionary Algorithm’s Predictions—An Application to Optimal Control

Viorel Mînzu () and Iulian Arama
Additional contact information
Viorel Mînzu: Control and Electrical Engineering Department, “Dunarea de Jos” University, 800008 Galati, Romania
Iulian Arama: Informatics Department, “Danubius” University, 800654 Galati, Romania

Mathematics, 2024, vol. 12, issue 2, 1-27

Abstract: Using metaheuristics such as the Evolutionary Algorithm (EA) within control structures is a realistic approach for certain optimal control problems. They often predict the optimal control values over a prediction horizon using a process model (PM). The computational effort sometimes causes the execution time to exceed the sampling period. Our work addresses a new issue: whether a machine learning (ML) algorithm could “learn” the optimal behaviour of the couple (EA and PM). A positive answer is given by proposing datasets apprehending this couple’s optimal behaviour and appropriate ML models. Following a design procedure, a number of closed-loop simulations will provide the sequences of optimal control and state values, which are collected and aggregated in a data structure. For each sampling period, datasets are extracted from the aggregated data. The ML algorithm experiencing these datasets will produce a set of regression functions. Replacing the EA predictor with the ML model, new simulations are carried out, proving that the state evolution is almost identical. The execution time decreases drastically because the PM’s numerical integrations are totally avoided. The performance index equals the best-known value. In different case studies, the ML models succeeded in capturing the optimal behaviour of the couple (EA and PM) and yielded efficient controllers.

Keywords: evolutionary algorithm; machine learning; optimal control; simulation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/187/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/187/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:187-:d:1314268

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:187-:d:1314268