EconPapers    
Economics at your fingertips  
 

Generalized Convergence for Multi-Step Schemes under Weak Conditions

Ramandeep Behl, Ioannis K. Argyros (), Hashim Alshehri and Samundra Regmi
Additional contact information
Ramandeep Behl: Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Ioannis K. Argyros: Department of Computing and Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
Hashim Alshehri: Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Samundra Regmi: Department of Mathematics, University of Houston, Houston, TX 77205, USA

Mathematics, 2024, vol. 12, issue 2, 1-15

Abstract: We have developed a local convergence analysis for a general scheme of high-order convergence, aiming to solve equations in Banach spaces. A priori estimates are developed based on the error distances. This way, we know in advance the number of iterations required to reach a predetermined error tolerance. Moreover, a radius of convergence is determined, allowing for a selection of initial points assuring the convergence of the scheme. Furthermore, a neighborhood that contains only one solution to the equation is specified. Notably, we present the generalized convergence of these schemes under weak conditions. Our findings are based on generalized continuity requirements and contain a new semi-local convergence analysis (with a majorizing sequence) not seen in earlier studies based on Taylor series and derivatives which are not present in the scheme. We conclude with a good collection of numerical results derived from applied science problems.

Keywords: multi-step scheme; ball convergence; complete normed space; nonlinear systems (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/220/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/220/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:220-:d:1315834

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:220-:d:1315834