EconPapers    
Economics at your fingertips  
 

Second-Order Approximate Reflection Coefficient of Thin Interbeds with Vertical Fractures

Shiwei Cui, Ya Sun () and Pu Wang
Additional contact information
Shiwei Cui: School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Ya Sun: School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Pu Wang: School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Mathematics, 2024, vol. 12, issue 2, 1-22

Abstract: The horizontal fractures in the strata will close in the compaction effect of overlying strata, while the vertical cracks are widely developed, which can be equivalent to HTI (transverse isotropy with a horizontal axis of symmetry) medium. When an S-wave propagates into HTI media, the shear wave will divide into two types of waves: a fast S-wave and slow S-wave. When the strata of HTI are thin and overlapping, called the thin interbeds model, the wave field exhibits complex primary reflections, converted waves, and multiples. We introduce a new second-order approximation of the total reflection coefficient, with the incidence angle lower than the critical angle in thin-interbed HTI media using a recursive algorithm. We verify the effectiveness of the second-order approximation by analyzing the energy of multiples. Comparing the second-order approximate solution that degenerates the HTI medium into isotropic and Kennett’s exact solution, we find that our solution has an accuracy of over 99.9% in any azimuth, with the incidence angle lower than the critical angle under P-wave incidence. However, our solution of the SP wave field is suitable for incidence azimuth angles between 0–75° and 120–180°, with the lowest accuracy occurring at an incidence angle of 25° and a relative error of 6.4%. The approximate solution in the SS wave field has the same applicable range as the SP wave, with the maximum error of 6.3% occurring at the incident angle of 1°. This new second-order approximate formula for the total reflection coefficient of thin interbeds composed of HTI helps us to understand the reflection characteristics of complex thin interbeds. It also lays a theoretical foundation for the development of AVO (Amplitude Versus Offset) analysis and inversion techniques for lithological and stratigraphic oil and gas reservoirs.

Keywords: thin interbeds; thin layer; reflection coefficient; HTI medium; shear wave splitting; second-order approximation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/232/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/232/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:232-:d:1316832

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:232-:d:1316832