EconPapers    
Economics at your fingertips  
 

Chaotic Binarization Schemes for Solving Combinatorial Optimization Problems Using Continuous Metaheuristics

Felipe Cisternas-Caneo (), Broderick Crawford (), Ricardo Soto, Giovanni Giachetti, Álex Paz and Alvaro Peña Fritz
Additional contact information
Felipe Cisternas-Caneo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Giovanni Giachetti: Facultad de Ingeniería, Universidad Andres Bello, Antonio Varas 880, Providencia, Santiago 7591538, Chile
Álex Paz: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile
Alvaro Peña Fritz: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile

Mathematics, 2024, vol. 12, issue 2, 1-39

Abstract: Chaotic maps are sources of randomness formed by a set of rules and chaotic variables. They have been incorporated into metaheuristics because they improve the balance of exploration and exploitation, and with this, they allow one to obtain better results. In the present work, chaotic maps are used to modify the behavior of the binarization rules that allow continuous metaheuristics to solve binary combinatorial optimization problems. In particular, seven different chaotic maps, three different binarization rules, and three continuous metaheuristics are used, which are the Sine Cosine Algorithm, Grey Wolf Optimizer, and Whale Optimization Algorithm. A classic combinatorial optimization problem is solved: the 0-1 Knapsack Problem. Experimental results indicate that chaotic maps have an impact on the binarization rule, leading to better results. Specifically, experiments incorporating the standard binarization rule and the complement binarization rule performed better than experiments incorporating the elitist binarization rule. The experiment with the best results was STD_TENT, which uses the standard binarization rule and the tent chaotic map.

Keywords: chaotic maps; binarization schemes; knapsack problem; Sine Cosine Algorithm; Grey Wolf Optimizer; Whale Optimization Algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/262/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/262/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:262-:d:1318439

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:262-:d:1318439