On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces
Valentín Gregori (),
Juan-José Miñana,
Bernardino Roig and
Almanzor Sapena
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Juan-José Miñana: Departamento de Matemática Aplicada, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Bernardino Roig: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Almanzor Sapena: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Mathematics, 2024, vol. 12, issue 2, 1-7
Abstract:
This paper is devoted to showing the relevance of the notion of completeness used to establish a fixed point theorem in fuzzy metric spaces introduced by Kramosil and Michalek. Specifically, we show that demanding a stronger notion of completeness, called p -completeness, it is possible to relax some extra conditions on the space to obtain a fixed point theorem in this framework. To this end, we focus on a fixed point result, proved by Mihet for complete non-Archimedean fuzzy metric spaces (Theorem 1). So, we define a weaker concept than the non-Archimedean fuzzy metric, called t -strong, and we establish an alternative version of Miheţ’s theorem for p -complete t -strong fuzzy metrics (Theorem 2). In addition, an example of t -strong fuzzy metric spaces that are not non-Archimedean is provided.
Keywords: fuzzy metric; cauchy sequence; p -Cauchy sequence; completeness; fixed point (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/287/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/287/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:287-:d:1320002
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().