EconPapers    
Economics at your fingertips  
 

On Completeness and Fixed Point Theorems in Fuzzy Metric Spaces

Valentín Gregori (), Juan-José Miñana, Bernardino Roig and Almanzor Sapena
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Juan-José Miñana: Departamento de Matemática Aplicada, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Bernardino Roig: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Almanzor Sapena: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain

Mathematics, 2024, vol. 12, issue 2, 1-7

Abstract: This paper is devoted to showing the relevance of the notion of completeness used to establish a fixed point theorem in fuzzy metric spaces introduced by Kramosil and Michalek. Specifically, we show that demanding a stronger notion of completeness, called p -completeness, it is possible to relax some extra conditions on the space to obtain a fixed point theorem in this framework. To this end, we focus on a fixed point result, proved by Mihet for complete non-Archimedean fuzzy metric spaces (Theorem 1). So, we define a weaker concept than the non-Archimedean fuzzy metric, called t -strong, and we establish an alternative version of Miheţ’s theorem for p -complete t -strong fuzzy metrics (Theorem 2). In addition, an example of t -strong fuzzy metric spaces that are not non-Archimedean is provided.

Keywords: fuzzy metric; cauchy sequence; p -Cauchy sequence; completeness; fixed point (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/287/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/287/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:287-:d:1320002

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:287-:d:1320002