EconPapers    
Economics at your fingertips  
 

Multidimensional Diffusion-Wave-Type Solutions to the Second-Order Evolutionary Equation

Alexander Kazakov () and Anna Lempert
Additional contact information
Alexander Kazakov: Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia
Anna Lempert: Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia

Mathematics, 2024, vol. 12, issue 2, 1-20

Abstract: The paper concerns a nonlinear second-order parabolic evolution equation, one of the well-known objects of mathematical physics, which describes the processes of high-temperature thermal conductivity, nonlinear diffusion, filtration of liquid in a porous medium and some other processes in continuum mechanics. A particular case of it is the well-known porous medium equation. Unlike previous studies, we consider the case of several spatial variables. We construct and study solutions that describe disturbances propagating over a zero background with a finite speed, usually called ‘diffusion-wave-type solutions’. Such effects are atypical for parabolic equations and appear since the equation degenerates on manifolds where the desired function vanishes. The paper pays special attention to exact solutions of the required type, which can be expressed as either explicit or implicit formulas, as well as a reduction of the partial differential equation to an ordinary differential equation that cannot be integrated in quadratures. In this connection, Cauchy problems for second-order ordinary differential equations arise, inheriting the singularities of the original formulation. We prove the existence of continuously differentiable solutions for them. A new example, an analog of the classic example by S.V. Kovalevskaya for the considered case, is constructed. We also proved a new existence and uniqueness theorem of heat-wave-type solutions in the class of piece-wise analytic functions, generalizing previous ones. During the proof, we transit to the hodograph plane, which allows us to overcome the analytical difficulties.

Keywords: nonlinear parabolic equation; porous medium equation; diffusion wave; exact solution; singular ordinary differential equation; existence theorem; analytical solution; power series; majorant method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/2/354/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/2/354/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:2:p:354-:d:1323990

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:354-:d:1323990