EconPapers    
Economics at your fingertips  
 

Pooled Steganalysis via Model Discrepancy

Jiang Yu (), Jing Zhang () and Fengyong Li
Additional contact information
Jiang Yu: Faculty of Business Information, Shanghai Business School, Shanghai 200235, China
Jing Zhang: Faculty of Business Information, Shanghai Business School, Shanghai 200235, China
Fengyong Li: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 201306, China

Mathematics, 2024, vol. 12, issue 4, 1-15

Abstract: Pooled steganalysis aims to discover the guilty actor(s) among multiple normal actor(s). Existing techniques mainly rely on the high-dimension and time-consuming features. Moreover, the minor feature distance between cover and stego is detrimental to pooled steganalysis. To overcome these issues, this paper focuses on the discrepancy of the statistical characteristics of transmitted multiple images and designs a model-based effective pooled steganalysis strategy. Facing the public and monitored channel, without using the feature extractions, pooled steganalysis collects a set of images transmitted by a suspicious actor and use the corresponding distortion values as the statistic representation of the selected image set. Specifically, the normalized distortion of the suspicious image set generated via normal/guilty actor(s) is modelled as a normal distribution, and we apply maximum likelihood estimation (MLE) to estimate the parameter (cluster center) of the distribution by which we can represent the defined model. Considering the tremendous distortion difference between normal and stego image sets, we can deduce that the constructed model can effectively discover and reveal the existence of abnormal behavior of guilty actors. To show the discrepancy of different models, employing the logistic function and likelihood ratio test (LRT), we construct a new detector by which the ratio of cluster centers is turned into a probability. Depending on the generated probability and an optimal threshold, we make a judgment on whether the dubious actor is normal or guilty. Extensive experiments demonstrate that, compared to existing pooled steganalysis techniques, the proposed scheme exhibits great detection performance on the guilty actor(s) with lower complexity.

Keywords: pooled steganalysis; batch steganography; distortion distribution; guilty actor; discrepancy (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/4/552/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/4/552/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:4:p:552-:d:1337367

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:552-:d:1337367