An ETD Method for Vulnerable American Options
Rafael Company (),
Vera N. Egorova and
Lucas Jódar
Additional contact information
Rafael Company: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Vera N. Egorova: Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avenida de los Castros, s/n, 39005 Santander, Spain
Lucas Jódar: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Mathematics, 2024, vol. 12, issue 4, 1-14
Abstract:
This paper introduces the exponential time differencing (ETD) technique as a numerical method to efficiently solve vulnerable American options pricing. We address several challenges, including removing cross-derivative terms through appropriate transformations, treating early-exercise opportunities using the penalty method, and substituting fixed boundary conditions with corresponding one-sided finite differences. The proposed method is shown to be both accurate and efficient through numerical experiments, which also compare the results with existing methods and analyze the numerical stability and convergence rate.
Keywords: vulnerable options; default risk; exponential time differencing; penalty method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/4/602/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/4/602/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:4:p:602-:d:1340635
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().