EconPapers    
Economics at your fingertips  
 

Energy Management for Hybrid Electric Vehicles Using Safe Hybrid-Action Reinforcement Learning

Jinming Xu and Yuan Lin ()
Additional contact information
Jinming Xu: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China
Yuan Lin: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China

Mathematics, 2024, vol. 12, issue 5, 1-20

Abstract: Reinforcement learning has shown success in solving complex control problems, yet safety remains paramount in engineering applications like energy management systems (EMS), particularly in hybrid electric vehicles (HEVs). An effective EMS is crucial for coordinating power flow while ensuring safety, such as maintaining the battery state of charge within safe limits, which presents a challenging task. Traditional reinforcement learning struggles with safety constraints, and the penalty method often leads to suboptimal performance. This study introduces Lagrangian-based parameterized soft actor–critic (PASACLag), a novel safe hybrid-action reinforcement learning algorithm for HEV energy management. PASACLag utilizes a unique composite action representation to handle continuous actions (e.g., engine torque) and discrete actions (e.g., gear shift and clutch engagement) concurrently. It integrates a Lagrangian method to separately address control objectives and constraints, simplifying the reward function and enhancing safety. We evaluate PASACLag’s performance using the World Harmonized Vehicle Cycle (901 s), with a generalization analysis of four different cycles. The results indicate that PASACLag achieves a less than 10% increase in fuel consumption compared to dynamic programming. Moreover, PASACLag surpasses PASAC, an unsafe counterpart using penalty methods, in fuel economy and constraint satisfaction metrics during generalization. These findings highlight PASACLag’s effectiveness in acquiring complex EMS for control within a hybrid action space while prioritizing safety.

Keywords: hybrid electric vehicles; energy management strategy; safe reinforcement learning; hybrid action space; Lagrangian methods (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/5/663/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/5/663/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:5:p:663-:d:1345170

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:663-:d:1345170