EconPapers    
Economics at your fingertips  
 

Fractional-Order Model-Free Adaptive Control with High Order Estimation

Zhuo-Xuan Lv () and Jian Liao
Additional contact information
Zhuo-Xuan Lv: School of Computer Science, Fudan University, Shanghai 200433, China
Jian Liao: School of Computer Science, Fudan University, Shanghai 200433, China

Mathematics, 2024, vol. 12, issue 5, 1-13

Abstract: This paper concerns an improved model-free adaptive fractional-order control with a high-order pseudo-partial derivative for uncertain discrete-time nonlinear systems. Firstly, a new equivalent model is obtained by employing the Grünwald–Letnikov (G-L) fractional-order difference of the input in a compact-form dynamic linearization. Then, the pseudo-partial derivative (PPD) is derived using a high-order estimation algorithm, which provides more PPD information than the previous time. A discrete-time model-free adaptive fractional-order controller is proposed, which utilizes more past input–output data information. The ultimate uniform boundedness of the tracking errors are demonstrated through formal analysis. Finally, the simulation results demonstrate the effectiveness of the proposed method.

Keywords: model-free adaptive control; fractional-order; pseudo-partial derivative; discrete-time system (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/5/784/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/5/784/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:5:p:784-:d:1352547

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:784-:d:1352547