Dirac Geometric Approach for the Unimodular Holst Action
Bogar Díaz (),
Eduardo J. S. Villaseñor () and
Diana Zomeño Salas ()
Additional contact information
Bogar Díaz: Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510, Mexico
Eduardo J. S. Villaseñor: Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
Diana Zomeño Salas: Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
Mathematics, 2024, vol. 12, issue 6, 1-10
Abstract:
We perform a Hamiltonian analysis of unimodular gravity in its first-order formulation, specifically a modification of the Holst action. In order to simplify the analysis, prior studies on this theory have introduced (for several reasons) additional elements, such as parametrization, complex fields, or considering the Barbero–Immirzi parameter as imaginary. We show that, by using a geometric implementation of the Dirac algorithm, a comprehensive analysis of the theory can be conducted without relying on these additional ingredients. The resulting theory reproduces the behavior of metric unimodular gravity.
Keywords: unimodular gravity; Holst action; geometric Dirac algorithm; Hamiltonian formulation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/6/890/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/6/890/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:6:p:890-:d:1358899
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().