EconPapers    
Economics at your fingertips  
 

Generalized Matrix Spectral Factorization with Symmetry and Construction of Quasi-Tight Framelets over Algebraic Number Fields

Ran Lu ()
Additional contact information
Ran Lu: Department of Mathematics, Hohai University, Nanjing 211100, China

Mathematics, 2024, vol. 12, issue 6, 1-29

Abstract: The rational field Q is highly desired in many applications. Algorithms using the rational number field Q algebraic number fields use only integer arithmetics and are easy to implement. Therefore, studying and designing systems and expansions with coefficients in Q or algebraic number fields is particularly interesting. This paper discusses constructing quasi-tight framelets with symmetry over an algebraic field. Compared to tight framelets, quasi-tight framelets have very similar structures but much more flexibility in construction. Several recent papers have explored the structure of quasi-tight framelets. The construction of symmetric quasi-tight framelets directly applies the generalized spectral factorization of 2 × 2 matrices of Laurent polynomials with specific symmetry structures. We adequately formulate the latter problem and establish the necessary and sufficient conditions for such a factorization over a general subfield F of C , including algebraic number fields as particular cases. Our proofs of the main results are constructive and thus serve as a guideline for construction. We provide several examples to demonstrate our main results.

Keywords: generalized matrix spectral factorization; quasi-tight framelets; framelet filter banks; symmetric framelets (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/6/919/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/6/919/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:6:p:919-:d:1360649

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:919-:d:1360649