EconPapers    
Economics at your fingertips  
 

Sliding Surface-Based Path Planning for Unmanned Aerial Vehicle Aerobatics

Oleg Cravioto, Belem Saldivar, Manuel Jiménez-Lizárraga (), Juan Carlos Ávila-Vilchis and Carlos Aguilar-Ibañez
Additional contact information
Oleg Cravioto: Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo 50130, Mexico
Belem Saldivar: Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
Manuel Jiménez-Lizárraga: Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo Léon, Nuevo León 66451, Mexico
Juan Carlos Ávila-Vilchis: Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo 50130, Mexico
Carlos Aguilar-Ibañez: Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico

Mathematics, 2024, vol. 12, issue 7, 1-25

Abstract: This paper exploits the concept of nonlinear sliding surfaces to be used as a basis in the development of aerial path planning projects involving aerobatic three-dimensional path curves in the presence of disturbances. This approach can be used for any kind of unmanned aerial vehicle aimed at performing aerobatic maneuvers. Each maneuver is associated with a nonlinear surface on which an aerial vehicle could be driven to slide. The surface design exploits the properties of Viviani’s curve and the Hopf bifurcation. A vector form of the super twisting algorithm steers the vehicle to the prescribed surfaces. A suitable switching control law is proposed to shift between surfaces at different time instants. A practical stability analysis that involves the descriptor approach allows for determining the controller gains. Numerical simulations are developed to illustrate the accomplishment of the suggested aerobatic flight.

Keywords: 3D path planning; sliding mode surface; multivariable super twisting algorithm; LMI (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/7/1047/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/7/1047/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:7:p:1047-:d:1367673

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1047-:d:1367673