Sliding Surface-Based Path Planning for Unmanned Aerial Vehicle Aerobatics
Oleg Cravioto,
Belem Saldivar,
Manuel Jiménez-Lizárraga (),
Juan Carlos Ávila-Vilchis and
Carlos Aguilar-Ibañez
Additional contact information
Oleg Cravioto: Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo 50130, Mexico
Belem Saldivar: Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
Manuel Jiménez-Lizárraga: Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo Léon, Nuevo León 66451, Mexico
Juan Carlos Ávila-Vilchis: Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo 50130, Mexico
Carlos Aguilar-Ibañez: Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
Mathematics, 2024, vol. 12, issue 7, 1-25
Abstract:
This paper exploits the concept of nonlinear sliding surfaces to be used as a basis in the development of aerial path planning projects involving aerobatic three-dimensional path curves in the presence of disturbances. This approach can be used for any kind of unmanned aerial vehicle aimed at performing aerobatic maneuvers. Each maneuver is associated with a nonlinear surface on which an aerial vehicle could be driven to slide. The surface design exploits the properties of Viviani’s curve and the Hopf bifurcation. A vector form of the super twisting algorithm steers the vehicle to the prescribed surfaces. A suitable switching control law is proposed to shift between surfaces at different time instants. A practical stability analysis that involves the descriptor approach allows for determining the controller gains. Numerical simulations are developed to illustrate the accomplishment of the suggested aerobatic flight.
Keywords: 3D path planning; sliding mode surface; multivariable super twisting algorithm; LMI (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/7/1047/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/7/1047/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:7:p:1047-:d:1367673
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().