Asymptotic for Orthogonal Polynomials with Respect to a Rational Modification of a Measure Supported on the Semi-Axis
Carlos Féliz-Sánchez,
Héctor Pijeira-Cabrera () and
Javier Quintero-Roba
Additional contact information
Carlos Féliz-Sánchez: Instituto de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Av. Alma Mater, Santo Domingo 10105, Dominican Republic
Héctor Pijeira-Cabrera: Departamento de Matemáticas, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Spain
Javier Quintero-Roba: Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, 28942 Fuenlabrada, Spain
Mathematics, 2024, vol. 12, issue 7, 1-16
Abstract:
Given a sequence of orthogonal polynomials { L n } n = 0 ∞ , orthogonal with respect to a positive Borel ν measure supported on R + , let { Q n } n = 0 ∞ be the the sequence of orthogonal polynomials with respect to the modified measure r ( x ) d ν ( x ) , where r is certain rational function. This work is devoted to the proof of the relative asymptotic formula Q n ( d ) ( z ) L n ( d ) ( z ) ⇉ n ∏ k = 1 N 1 a k + i z + a k A k ∏ j = 1 N 2 z + b j b j + i B j , on compact subsets of C ∖ R + , where a k and b j are the zeros and poles of r , and the A k , B j are their respective multiplicities.
Keywords: orthogonal polynomials; asymptotic behavior; rational modifications (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/7/1082/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/7/1082/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:7:p:1082-:d:1369700
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().