EconPapers    
Economics at your fingertips  
 

Asymptotic for Orthogonal Polynomials with Respect to a Rational Modification of a Measure Supported on the Semi-Axis

Carlos Féliz-Sánchez, Héctor Pijeira-Cabrera () and Javier Quintero-Roba
Additional contact information
Carlos Féliz-Sánchez: Instituto de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Av. Alma Mater, Santo Domingo 10105, Dominican Republic
Héctor Pijeira-Cabrera: Departamento de Matemáticas, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Spain
Javier Quintero-Roba: Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, 28942 Fuenlabrada, Spain

Mathematics, 2024, vol. 12, issue 7, 1-16

Abstract: Given a sequence of orthogonal polynomials { L n } n = 0 ∞ , orthogonal with respect to a positive Borel ν measure supported on R + , let { Q n } n = 0 ∞ be the the sequence of orthogonal polynomials with respect to the modified measure r ( x ) d ν ( x ) , where r is certain rational function. This work is devoted to the proof of the relative asymptotic formula Q n ( d ) ( z ) L n ( d ) ( z ) ⇉ n ∏ k = 1 N 1 a k + i z + a k A k ∏ j = 1 N 2 z + b j b j + i B j , on compact subsets of C ∖ R + , where a k and b j are the zeros and poles of r , and the A k , B j are their respective multiplicities.

Keywords: orthogonal polynomials; asymptotic behavior; rational modifications (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/7/1082/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/7/1082/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:7:p:1082-:d:1369700

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1082-:d:1369700