EconPapers    
Economics at your fingertips  
 

A Bibliometric Analysis of a Genetic Algorithm for Supply Chain Agility

Weng Hoe Lam (), Weng Siew Lam () and Pei Fun Lee
Additional contact information
Weng Hoe Lam: Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
Weng Siew Lam: Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
Pei Fun Lee: Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia

Mathematics, 2024, vol. 12, issue 8, 1-22

Abstract: As a famous population-based metaheuristic algorithm, a genetic algorithm can be used to overcome optimization complexities. A genetic algorithm adopts probabilistic transition rules and is suitable for parallelism, which makes this algorithm attractive in many areas, including the logistics and supply chain sector. To obtain a comprehensive understanding of the development in this area, this paper presents a bibliometric analysis on the application of a genetic algorithm in logistics and supply chains using data from 1991 to 2024 from the Web of Science database. The authors found a growing trend in the number of publications and citations over the years. This paper serves as an important reference to researchers by highlighting important research areas, such as multi-objective optimization, metaheuristics, sustainability issues in logistics, and machine learning integration. This bibliometric analysis also underlines the importance of Non-Dominated Sorting Genetic Algorithm II (NSGA-II), sustainability, machine learning, and variable neighborhood search in the application of a genetic algorithm in logistics and supply chains in the near future. The integration of a genetic algorithm with machine learning is also a potential research gap to be filled to overcome the limitations of genetic algorithms, such as the long computational time, difficulties in obtaining optimal solutions, and convergence issues for application in logistics and supply chains.

Keywords: genetic algorithm; metaheuristic; supply chain; logistics; bibliometric analysis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/8/1199/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/8/1199/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:8:p:1199-:d:1377216

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1199-:d:1377216