EconPapers    
Economics at your fingertips  
 

Brain-Inspired Agents for Quantum Reinforcement Learning

Eva Andrés, Manuel Pegalajar Cuéllar () and Gabriel Navarro
Additional contact information
Eva Andrés: Department of Computer Science and Artificial Intelligence, ETSI Informática y de Telecomunicación, Universidad de Granada, C/. Pdta Daniel Saucedo Aranda sn, 18014 Granada, Spain
Manuel Pegalajar Cuéllar: Department of Computer Science and Artificial Intelligence, ETSI Informática y de Telecomunicación, Universidad de Granada, C/. Pdta Daniel Saucedo Aranda sn, 18014 Granada, Spain
Gabriel Navarro: Department of Computer Science and Artificial Intelligence, ETSI Informática y de Telecomunicación, Universidad de Granada, C/. Pdta Daniel Saucedo Aranda sn, 18014 Granada, Spain

Mathematics, 2024, vol. 12, issue 8, 1-26

Abstract: In recent years, advancements in brain science and neuroscience have significantly influenced the field of computer science, particularly in the domain of reinforcement learning (RL). Drawing insights from neurobiology and neuropsychology, researchers have leveraged these findings to develop novel mechanisms for understanding intelligent decision-making processes in the brain. Concurrently, the emergence of quantum computing has opened new frontiers in artificial intelligence, leading to the development of quantum machine learning (QML). This study introduces a novel model that integrates quantum spiking neural networks (QSNN) and quantum long short-term memory (QLSTM) architectures, inspired by the complex workings of the human brain. Specifically designed for reinforcement learning tasks in energy-efficient environments, our approach progresses through two distinct stages mirroring sensory and memory systems. In the initial stage, analogous to the brain’s hypothalamus, low-level information is extracted to emulate sensory data processing patterns. Subsequently, resembling the hippocampus, this information is processed at a higher level, capturing and memorizing correlated patterns. We conducted a comparative analysis of our model against existing quantum models, including quantum neural networks (QNNs), QLSTM, QSNN and their classical counterparts, elucidating its unique contributions. Through empirical results, we demonstrated the effectiveness of utilizing quantum models inspired by the brain, which outperform the classical approaches and other quantum models in optimizing energy use case. Specifically, in terms of average, best and worst total reward, test reward, robustness, and learning curve.

Keywords: quantum reinforcement learning; quantum neural networks; quantum spiking neural network; quantum long short-term memory; brain-inspired models (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/8/1230/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/8/1230/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:8:p:1230-:d:1378863

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1230-:d:1378863