EconPapers    
Economics at your fingertips  
 

Fractional-Order Sliding Mode Observer for Actuator Fault Estimation in a Quadrotor UAV

Vicente Borja-Jaimes (), Antonio Coronel-Escamilla, Ricardo Fabricio Escobar-Jiménez, Manuel Adam-Medina, Gerardo Vicente Guerrero-Ramírez, Eduardo Mael Sánchez-Coronado and Jarniel García-Morales ()
Additional contact information
Vicente Borja-Jaimes: Departamento de Ingeniería Electrónica, TecNM-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca 62490, Morelos, Mexico
Antonio Coronel-Escamilla: División de Ingeniería, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey 64849, Nuevo León, Mexico
Ricardo Fabricio Escobar-Jiménez: Departamento de Ingeniería Electrónica, TecNM-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca 62490, Morelos, Mexico
Manuel Adam-Medina: Departamento de Ingeniería Electrónica, TecNM-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca 62490, Morelos, Mexico
Gerardo Vicente Guerrero-Ramírez: Departamento de Ingeniería Electrónica, TecNM-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca 62490, Morelos, Mexico
Eduardo Mael Sánchez-Coronado: Departamento de Mecatrónica, Universidad Tecnológica del Centro de Veracruz, Cuitláhuac 94910, Veracruz, Mexico
Jarniel García-Morales: Departamento de Ingeniería Electrónica, TecNM-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca 62490, Morelos, Mexico

Mathematics, 2024, vol. 12, issue 8, 1-26

Abstract: In this paper, we present the design of a fractional-order sliding mode observer (FO-SMO) for actuator fault estimation in a quadrotor unmanned aerial vehicle (QUAV) system. Actuator faults can significantly compromise the stability and performance of QUAV systems; therefore, early detection and compensation are crucial. Sliding mode observers (SMOs) have recently demonstrated their accuracy in estimating faults in QUAV systems under matched uncertainties. However, existing SMOs encounter difficulties associated with chattering and sensitivity to initial conditions and noise. These challenges significantly impact the precision of fault estimation and may even render fault estimation impossible depending on the magnitude of the fault. To address these challenges, we propose a new fractional-order SMO structure based on the Caputo derivative definition. To demonstrate the effectiveness of the proposed FO-SMO in overcoming the limitations associated with classical SMOs, we assess the robustness of the FO-SMO under three distinct scenarios. First, we examined its performance in estimating actuator faults under varying initial conditions. Second, we evaluated its ability to handle significant chattering phenomena during fault estimation. Finally, we analyzed its performance in fault estimation under noisy conditions. For comparison purposes, we assess the performance of both observers using the Normalized Root-Mean-Square Error (NRMSE) criterion. The results demonstrate that our approach enables more accurate actuator fault estimation, particularly in scenarios involving chattering phenomena and noise. In contrast, the performance of classical (non-fractional) SMO suffers significantly under these conditions. We concluded that our FO-SMO is more robust to initial conditions, chattering phenomena, and noise than the classical SMO.

Keywords: fractional calculus; fractional derivative; Caputo derivative; sliding mode observer; fault estimation; unmanned aerial vehicle (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/8/1247/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/8/1247/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:8:p:1247-:d:1379325

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1247-:d:1379325