EconPapers    
Economics at your fingertips  
 

Numerical Analysis for Sturm–Liouville Problems with Nonlocal Generalized Boundary Conditions

Chein-Shan Liu, Chih-Wen Chang () and Chung-Lun Kuo
Additional contact information
Chein-Shan Liu: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
Chih-Wen Chang: Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan
Chung-Lun Kuo: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan

Mathematics, 2024, vol. 12, issue 8, 1-23

Abstract: For the generalized Sturm–Liouville problem (GSLP), a new formulation is undertaken to reduce the number of unknowns from two to one in the target equation for the determination of eigenvalue. The eigenparameter-dependent shape functions are derived for using in a variable transformation, such that the GSLP becomes an initial value problem for a new variable. For the uniqueness of eigenfunction an extra condition is imposed, which renders the right-end value of the new variable available; a derived implicit nonlinear equation is solved by an iterative method without using the differential; we can achieve highly precise eigenvalues. For the nonlocal Sturm–Liouville problem (NSLP), we consider two types of integral boundary conditions on the right end. For the first type of NSLP we can prove sufficient conditions for the positiveness of the eigenvalue. Negative eigenvalues and multiple solutions may exist for the second type of NSLP. We propose a boundary shape function method, a two-dimensional fixed-quasi-Newton method and a combination of them to solve the NSLP with fast convergence and high accuracy. From the aspect of numerical analysis the initial value problem of ordinary differential equations and scalar nonlinear equations are more easily treated than the original GSLP and NSLP, which is the main novelty of the paper to provide the mathematically equivalent and simpler mediums to determine the eigenvalues and eigenfunctions.

Keywords: generalized Sturm–Liouville problem; ?-dependent boundary conditions; boundary shape functions; nonlocal Sturm–Liouville problem; fixed-quasi-Newton method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/8/1265/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/8/1265/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:8:p:1265-:d:1380310

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1265-:d:1380310