EconPapers    
Economics at your fingertips  
 

Bifurcation Analysis for an OSN Model with Two Delays

Liancheng Wang () and Min Wang
Additional contact information
Liancheng Wang: Department of Mathematics, Kennesaw State University, Marietta, GA 30060, USA
Min Wang: Department of Mathematics, Kennesaw State University, Marietta, GA 30060, USA

Mathematics, 2024, vol. 12, issue 9, 1-17

Abstract: In this research, we introduce and analyze a mathematical model for online social networks, incorporating two distinct delays. These delays represent the time it takes for active users within the network to begin disengaging, either with or without contacting non-users of online social platforms. We focus particularly on the user prevailing equilibrium (UPE), denoted as P * , and explore the role of delays as parameters in triggering Hopf bifurcations. In doing so, we find the conditions under which Hopf bifurcations occur, then establish stable regions based on the two delays. Furthermore, we delineate the boundaries of stability regions wherein bifurcations transpire as the delays cross these thresholds. We present numerical simulations to illustrate and validate our theoretical findings. Through this interdisciplinary approach, we aim to deepen our understanding of the dynamics inherent in online social networks.

Keywords: online social network; stability region; Hopf bifurcation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/9/1321/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/9/1321/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:9:p:1321-:d:1383618

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1321-:d:1383618